Megaprocessor

Simulator User Guide

May 2016

James Newman

1. Introduction

The simulator for the Megaprocessor is a Windows application It can be downloaded from
www.megaprocessor.com. There is also an assembler and some example programs. Program
images in Intel Hex format can be loaded and run. The simulation is cycle accurate. Some of the
peripherals are emulated including memory, timers and GPIO. (Interrupts and the UART are not

currently, May 2016, simulated). Breakpoints and single stepping are possible as well as free
running.

TIP:

The “Registers” and “Peripherals” windows are updated as each instruction is executed. This has

a significant impact on speed of simulation. This can be reduced if those windows are minimised
or closed.

http://www.megaprocessor.com/

2. Instructions

On starting the simulator generates an initial random program and presents a set of windows which

will look something like :

=
“ MegaProcessor - MegaProcessorl

File Debug Window Help

D @rerpheas

[<

SR mternalrardata
A0

0o0ze

Ready

7D

=10l
=0l
I [

CHF El. E3
MOVE . RZ
OR . RZ
CLE

TEST

ADDQ

LD.B

ADDX

LD.E

OR

OR

AND

MOVE

ST.W

SET

AND .
ROL.WT R3.

OR Rz,
CLE RO
ST.W (R3++).
ADDO RO, #2
BGT 0=0085
CHF RO,

OR

SUBX

AND

OR .

ADD . ¥O=FF9E
CHFE . R3

ADD . R2

=0l x|

|

To simulate the execution of a particular program use File::Load. This will bring up a File Open dialog
to find and select an Intel Hex format file (.hex extension) containing the image you wish to simulate.
(This will have been created by the Assembler).

Loading a file will simulate a reset which will set the PC register to zero. The simulation is controlled
through the debug menu :

Microsoft Visual Studio

Project Buld Debug Tools Window Community Help

d | % S| 90 85| b Debug

TLEERLT -3 X MegaProcessor. . .POPUP - Menu)
sor Fie [Tl Window Help
S50r.rc T
“ator F35

Step F10
3_ABOLTBOX Halt Shift+F5
3_REGISTERVALLE

Reset
) Stats Reset
" MP
1_DATA_POPUP Stats Save...
1_MAINFRAME [Type Here

1_MegaProcessorTYPE

Debug::Run will cause the simulation to execute instructions until either asked to halt, or a
breakpoint is executed (see section on Disassembly window), or a memory violation occurs (see
section on Registers window).

The simulation can also single step instructions using Debug::Step.

Debug::Reset simulates a reset. The PC is set to its vector base address and the simulated
peripherals are also reset.

During simulation a count is kept of the number of times the processor executes an instruction at
each address. The set of current counts can be saved to file using Debug::Stats Save. The counts can
be cleared to zero using Debug::Stats Reset. This can be useful for performance profiling.

3. Windows

a. Disassembly
Each time an image is loaded the memory is disassembled. This disassembly can be viewed in a
disassembly window.

If the instruction currently pointed to by the PCis in view it will be indicated by a green arrow.

Double clicking on a line will set a breakpoint on it. Double clicking on that line again will clear the
breakpoint. Breakpoints are indicated by red circles.

' Internal RAM data
al iﬂi'Trace Log
AD

a0 Access wiolation @ Wr @IEI:-:EIEf-I

A0

&0 oooo - 29 | HOR Rl. RZ

A0 pepe|l ono1 - 23 | ¥OR R3. RO

A0 0002 - BE 84 E1 | ST.E 0xE184. RZ

Al 0005 : 6C | SUE R0, R3

a0 W 0006 : De ABE | ID.E R2, #0xAE

&0 ooog - 52 | ADD0 R2Z. #2

&0 0009 - 90 | ID.W RO, (R2++)

&0 000& - 49 | ADD R1, R2?

&0 000E - F1 | HOVE SP. RO

&0 0ooc - Fi | HOVE SP. RO

&0 000D - BE E9 EB | ST.W 0xEBE9. R3

&0 0010 : B3 46 DE | ID.W R3. 0xDBAG
0013 - 3C | OR RO, R3

Right clicking in the disassembly window will bring up a popup dialog:

x
Addrezs IM

ak. Cancel |

Entering an address (in hexadecimal) will cause the disassembly window to start displaying from that
address.

NOTE: The disassembly listing is created when an image is loaded. If you mix code and data you may
find that the disassembly is incorrect for the first one or two instructions located immediately after a
data section. This is because the disassembler does not know what is what and treats everything as
code. (The simulation will execute the correct instructions i.e. what is actually located at the
address). This can be avoided by:

e not mixing code and data
e or appending each data section with three NOP opcodes (OxFF).

b. Trace Log
Each time an instruction is executed an entry is added to the trace log. These entries give the
address and instruction executed as well as the values of the RO, R1, R2, R3, PS and SP registers. If a
memory access occured then that is also shown. Entries are also added for a RESET event, and if a
memory violation occurred (see section on registers window).

nz|2vE | o0ioo - Fa | DIV. O
[l BB Trace Log oy] B3]
gg Access violation Wr @ OxE184 =
02 2: 0002 BE 84 E1 | ST.B OzE184, R2 || RO[CDCD] R1[0000] R2[CDCD] R3[0000] SP[CDCD] PS[C5] || Wr.CD@E184 |
03 1. 0001 @ 23 | XOR R3, RO || RO[CDCD] R1[0000] R2[CDCD] R3[CDCD] SP[CDCD] PS[CS] |

0. 0000 ;29 | XOR Rl, RZ || RO[CDCD] R1[CDCD] R2[CDCD] R3[CDCD] SP[CDCD] BSLCD] |

RESET

c. External/Internal Ram data
These are windows onto memory.

The Internal RAM window displays the contents of the 256 bytes of memory based at 0xA000 which
corresponds to the Megaprocessor RAM built from discrete components.

The External RAM window displays the contents of the 32K bytes of memory based at 0x0000 which
corresponds to the RAM built from a RAM chip.

T I T T T T Y) e |
- e e T
e » e » |

» External RAM data

87 78 73 4D
7F 70 FO A7
Ci BE 7D 9F
99 CD D3 0D

. BE 4C EC 03
0z210 . ©CA 27 FF D8

L
s* 220 Co oc T S S
#® 0230 . 99 E7 [an=
* : ‘[an00 =
##|0240 0 9F EL “linto . 90 8D A6 SC A7 2D SB C3 26 D9 I1C 70 8 AC E7 7C 9FD4]
0250 : 8F 73 flhigzo . 53 &l IF DO AR 04 30 38 E9 26 71 BA D5 G55 4E 25
H gg?g gg gf lap3n0 . Ca 0B A6 EC 45 66 72 35 AS D8 A8 2E 2F 20 GF Af 9FD4]
= AD40 . 55 79 33 Ce 38 11 EB SF 6B BC 59 02 Fi EA 82 B2
4 gggg gg g; ‘laso - AB D? FF B2 83 01 A3 94 BC DF SE AB D6 DO 61 60
#|02%0 - 00 22 laven : BC 52 83 45 68 74 E4 OC 94 BE DO DE A4 2F E6 EF 9FD4]
sel02i0 - BY 2% Mlaovo s Ba 57 79 S5 68 Ee 36 1A 64 55 07 90 86 A4 38 E 9FD4]
* : ‘lags0 : 15 93 D9 Fe 44 15 £3 68 FC 02 9E F6 DC OC Cl 05 CDCD]
rgggg : SE (E';E EADBD . 7F F4 DB 7E FD FE 73 DC B4 A2 6B 84 48 84 2B 55 CDCD]
oopp . B4 CE (lacao . Ee A FB 81 D3 DC AF SB 1B 81 BA FL A9 €9 SD 1B cDCD]
$o02E0 0 10 o0 ClaoBo B2 16 EF D4 43 2F Al 09 04 2D 52 30 23 §8 21 DB cDcD]
se[02F0 - 31 8C Hlaoco : BE F2 BL 8D 1E B2 12 CC FF 74 SD 77 14 2E 00 Si cDCD]
s2|0300 - 57 C7 flaopo : 4c 26 7B 00 54 62 0A CB DD 60 B4 3B IF 08 83 9D CDCD]
; fla0ED . 1D DF 5 C2 2B 7D D2 24 AE 41 DF 32 24 43 F3 Ea
:‘gggg : ‘132 [2)]’; laDFD : €4 mA 42 A9 26 80 F4 42 C5 A2 CB 4E 44 7C 79 4 CDCD']
* '] CDCD]
#|0340 © BC Fo ¢ CDCD]
0350 : SE 6A -
n3an Fa 72

Double clicking on a byte value will bring up a dialog allowing you to change the value at that
location (value in hexadecimal).

x
052 |

0k, Cancel |

Right clicking will bring up the dialog to enter an address (in hexadecimal) for the window display to
start from.

d. Peripherals
This window allows the simulation of some of the peripherals. In particular I/O, counter and timer.
Interrupts and the UART are not currently (May 2016) simulated.

PUTLITE =l

L L2 B B L B DL 1) L 1 1]

L n
% B Peripherals ;.E;;!

» Cycle Count : 0000001D ﬂ
[]

. =
_= TIMEF BLOCE =
& Counter : 001D

+ Timer : FFE3

bl Timer ctrl - oo0o

(£] —
e

: I.-0 BLOCK

: Input

Bl v

b O

. O A © x 11 L2 Rl R2

s 20 @® O3 KX ENRNKKKXKNKRX

I. 4 5 [7 g 9 A E C D E F

- O

] 1

]

=

[]

(2

(2

(2

(2

[]

L

= -

L

L |

L |

[]

¥

1T [0031 : D4 CE | ID.E RO0. #0=CH

The timer block simulates the counter and timer. These will update each cycle in the same way as
the real hardware does. There is no interaction with these values through the GUI.

The 1/0 block simulates the modified Venom Arcade Stick attached to the input lines of the Control
and I/0 frame. (NOTE: on the real hardware there are pullup resistors on all of the input lines.
Therefore the default value in real life that will be read is OxFFFF, and that is simulated here). The

pattern of 5 radio buttons on the left represent the joystick. This is attached to the 4 LS input bits.
Selecting one of the outer radio buttons will cause the associated bit to go LOW. Selecting the centre
button represents the joystick being centred and all 4 simulated input bits will be HIGH. Bits 4..B
represent the 8 buttons (and are labelled the same way). When the checkbox has a cross the bit will
read HIGH, when there is no cross the bit will read LOW.

1
- - 2
T‘ﬁa& B A T@
- = =
£ : g g |9
T0 L o L e i Raped
1oy YR ony FETYE g3 fRiQ ez L1 JTEOEE o3y 4
578 a7 : 2 s
@
7% 3
Sl 3
a9 Q4
2700
g o L
43 46
R PP 4 2080
pooran | .
® L 8 e

Cycle count is a count of the number of cycles since the last RESET. It does not represent any part of
the hardware but is provided for debug. It’s a 32 bit counter and so does not wrap as quickly as the
simulated counter does.

e. Registers
This window shows the values of the processor registers and also the memory map.

External RAM . 0=x0000-0xYFFF

FPeriphrals : 0=x8000-0=8FFF
Invalid : 0x9000-0=9FFF [¥] Ereak on access

Internal RAM : 0O=xA000-Dx=AOQFF
Invalid : 0xAl00-0=FFFF [¥] Ereak on access

WYector base
@ O=0000 (:) 0=FFFO

———

O TSS—— I x

:' Registers . [

" SP - 9FDA ol
1 PS : 00CL UD &X¥ FoNI B
- RO : EFE7 =
. Rl : 0000

- RZ : 00B2

. R3 . BlC4

a1 H —
5 EMoTY ap

.

1

"

.

o

*la

Double clicking on a register value will bring up a dialog allowing you to change it (new value entered

in hexadecimal).

There are some parts of the memory map which in “real life” have no hardware. For debug the
simulator can break if they are accessed. In real life the processor will read garbage, and writes will

have no effect.

The Megaprocessor can locate its vector table at either 0x0000 or OxFFFO and the simulator provides
a mechanism to control this. Until | build the ROM frame the only sensible option is 0x0000.

f. RAM LEDs
This window shows the contents of the 256 byte RAM built from discrete components as a set of red
dots. This is to emulate the appearance of the memory frame. Byte 0 bit 0 is top left (address
0xA000). Top right is byte 3 bit 7.

-lolx

L3 1 B * i L B 1) e o
* L b * » L L1 B
L L L * . *
* L " L Lk L L L B
i LBk L L B Lt L B * i
L L] L] L L Bl 1 L L L L
L Bk * L 3 BNk BN I L 1] L 1 L) L 1 L1 1]
[T
L L Bl B * L4 L 1
LB L1 L 2 1] Ll L L B
LB B L L B B L3 2 * * *
L L i L4 Lk LA Bk 4 L
* * i L L] Lt L 1] Lt L
* L Bl L LR 1 L Ek Bl il L L B
L L L I * L1 L L BN] L BNk
¥ ¥ |
L i L » LB B Ll 22l 1l Bl
L it B L LI L L B L L Bl *
LR L L Ll LB L Lol Lk Bt L BNl
Ll B B Ak Bl B L B L L Ll ik it LB
* » L Bk ok B L *
* bbb A L Bl Lo b % L Bl L Bl B B
L L B B L) L L] L L]
L
L 1 LB L1 * L L L L L
L B L A A
* Al e i i ii.ﬁiii i
A L i 21 L Bt B
L L L L] Ll Lk L B L LA L
* L 1 Lk L 1 * *
L L J * L J i. *» L4 L] L J L L L)
L L » L 1] L L
A Ll L L A
LA Bk L " L4 B
L i L Ll A A A A A
A A A A A O LA L B L
LBk L B ol L EL L b B B L * *
» L J L J L4 b BNk B L Bul B
L el Bt L A A
L B L {0 * Laa
L L B L 1 L L 2 B LBt 1
L] {0 L L LB L L LBk B 1
* * L 11 B L L
* Ll B L L B &
» » L L Bl] L b Bk 1 B L) o
L3 2L L et L B L 3 i
e e e b LB L1 L L L B L3 Bt L1
L Bk L3 1 B LAt 1 B 5
i * L L] » Lt L L1
L Bk Bl * L 3 * L L
L3 A B L i * .ﬁi i 5
L L L1 J » » L L 1 J »
L Lo | c
L Bt B LIl Lt Bt L * * i
LA L B B » LA A L Bl Lok Bl L
* * * * LRt L L Lok B B kL
* L L] L Bl * O L Bl B =
L 1] * * LB L L L g *
r » L4 ik * Lk L L L
, » » L 1 L1 1] L L & 1] L] L L

